
Moclel Checking the Remote Agent Planner

(extended abstract)

Lina Khatib, Nico{a Muscettola, and Klaus Havel_md

NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035

{lina, mus, havehmd}@ptolemy.arc.nasa.gov

November 16, 2000

Keywords: Model Checking, Verification, Autonomy. Planning. Scheduling

This work tackles the problem of using Model Checking for the purpose of

verifying the HSTS planning system. HSTS is the planner and scheduler of the

remote agent autonomous control system deployed in Deep Space One (DS1)[8].

Model Checking allows for the verification of domain models as well as planning

engines. We have chosen the real-time model checker UPPAAL for this work

[6]. We start by motivating our work in the'ih_roduction. Then we give a brief

description of HSTS and UPPAAL. After that, we give a sketch for the mapping

of HSTS models into UPPAAL and we present samples of plan model properties

one may want to verify.

1 Introduction

AI technologies, and specifically AI planning, facilitates the elicitation and au-

tomatic manipulation of system level constraints. However, the models used by

the planner still need to be verified, i.e., it is necessary to guarantee that no un-

intended consequences will arise. One question that comes to mind is whether

the most advanced techniques used in software verification, specifically model

checking, can hrlp.

The most u.s_,_l model checking formalism.s, however, cannot e;Lsily represent

constraints that are naturally represented by HSTS, namely continuous time

and other continuous parameters. Also, the goal of HSTS is to provide an

expressive language to facilitate knowledge acquisition by non AI experts (e.g..

system engineers) So. HSTS models cannot be easily translated into a model

checking formalism. To allow model checking algorithms to operate on HSTS

models we. therefore, need a mapping between a subset of the HSTS Domain

Description Language to a mode[checking formalism. An earlier attempt to

analyze HSTS planner models, where no metrics were considered, is described

in [10].

We choose UPPAAL because it can represent time (section 3), it is compara-

ble to HSTS in terms of representation and search since they are both constraint

based systems, and h_ been successfully applied to several verification cases of

real-time systems of industrial interest [4, 3].

Some of the issues that we are interested in addressing m this research are:

1. Whether model checking techniques can address problems of the size of a

realistic autonomy planning application:

2. Once we have a mapping from a planner model into a model checking

formalism, what the core differences between the search method used in

model checking and that used by a planner are: and

3. Lessons, if any, that planning can take &ore model checking and vice versa

regarding representation, search control, and other aspects. Related work

can be found in [1, 2].

2 HSTS

HSTS, Heuristic Scheduling Testbed System, is a general constraint-based plan-

ner and scheduler. It is also one of four components that constitutes the Remote

Agent Autonomous system which was used for the Remote Agent Experiment,

(RAX), in May of 1999, for autonomous control of the Deep Space 1 space-

craft [8].

H_TS consi_r.s of a. plannm_ entire, r.ha.r takes a. plan mo,Lrl, in ad, Lir.hm to

_t goal, ;> input and produces a complete plan. A plan mo,leL is a (lescription

of the domain given _ a set of objects and constraints. The produced plan

achieves the specified goal and satisfies the constraints [n the plan model.

In more ,letail, an HSTS plan tootle[is b&sed on a collection o[" entities,

called state variables, that can be in different states, represented as predicate

values. Therefore, predicates represent "'spans", or intervals, on state variables.

A set of compatibilities between predicates is specified. The compatibilities are

temporal constraints, which may involve durations, between end points of pred-

icate values. For example, "predl meets pred2" indicates that the end of predl

(certain predicate value) should coincide with the start of pred2 (another pred-

icate value): and "predl before[a,5] pred2'" indicates that the distance between

the end of predl and the start of pred2 is between 3 and 5. An HSTS plan is a

complete assignment of predicate values for all the state variables that satisfy

all compatibilities.

HSTS ensures robustness of schedules bv allowing for flexible temporal repre-

sentations. The quality of generated plans is improved by interleaving planning

and scheduling, rather than performing them separately. HSTS also allows nat-

ural and efficient handling of concurrent processes, and the modeling language

is simple in its uniform representation of actions and states. HSTS has a rich

language for expressing temporal relation constraints {9, 5].

3 UPPAAL

UPPAAL, an acronym based on a combination of UPPsala and AALborg uni-

versities, is a tool box for modeling, simulation, and verification of real-time

systems. The simulator is used for interactive and automated analysis of system

behavior during early design stages while the verifier, which is a model-checker,

covers the exhaustive dynamic behavior of the system for proving safety and

bounded liveness properties. The verifier, which is a symbolic model checker, is

implemented using sophisticated constraint-solving techniques where efficiency

and optimization are emphasized. Space reduction is accomplished by both lo-

cal and global reductions. The local reduction involves reducing the amount

of space a symbolic state occupies and is accomplished by the compact rep-

rescnr,ation of Diff.r.w'e Bounded Matrix (DBM) for clock co.su'ai._.s. The

global reduction involves reducing the number of stat,'s to save ,luring a course

of teachability analysis [1 i, 7].

A UPPAAL mo, lel consists of a set of timed atttomara, ;t set of local clocks,

global variables, and sytxchronizing channels. A no_le m an automaton may be

;_ssociated with an invariant, which is a set of clock constraints, for enforcing

transitions out of the node. An arc may be associate,l with a guard for con-

trolling when this transition can be taken. On any transition, local clocks may

get reset and global variables may get re-assigned. A trace in UPPAAL is a

sequence of states, each of which containing a complete specification of a node

from each automata, such that each state is the result of a valid transition from

the previous state.

UPPAAL had been proven to be a useful model_checking tool for many

domains including distributed mult.imedia and power controller applications [4.

3i.

4 Mapping HSTS models into UPPAAL

Here, we present a sketch of the translation from HSTS plan models into UP-

PAAL models. Definitions for used terms, and a more formal translation algo-

rithm, are to be provided in the final paper.

Each state variable is represented as a UPPAAL automaton where each value

predicate is represented as a node. Transitions of an automaton represent value

ordering constraints of the corresponding state variable. Each predicate value

is mapped into a main node and two chains of nodes that are of zero duration

each. The first chain represents the start of the value span and all its constraints.

The second chain represents the end of the value span and all its constraints.

Duration constraints are translated into invariants and guards of local clocks.

Temporal relation constraints are implemented through communication chan-

nels.

A goal in HSTS corresponds to a property in UPPAAL. Similarly, a plan

in HSTS corresponds to an execution trace in UPPAAL. More details, with

supporting examples, will be given in the final paper.

5 Properties for Verification

UPPAAL allows for verifying properties that are useful for ensuring correctness

an,l detecting inconsistencies and flaws m HSTS plan model. For example,

(.'PPAAL is able to verify" the existence of con_plete plans that satisfy given

constraints. It can also detects the mutual exclusion proi)erties of predicate

v&llt_:S,

Our experience on a sample problem of a rover that can go from one location

to another to collect rocks showed the usefulness, and success, of using UPPAAL

for model checking HSTS. More details on this experiment are to be provided

in the final paper.

6 Summary

Our work tackles the problem of using Model Checking for the purpose of veri-

f.ving planning svstems.

We have constructed an algorithm that maps plan models into timed au-

tomata. The algorithm works well for translating models of limited size and

complexity. Since complete constraint planning models are much too complex

for a complete translation into a model checking formalism, there is a need for

building representative "abstract" models. We will investigate such abstraction

in the near future.

After translating a plan model, properties can be checked for detecting in-

consistencies and incompleteness in the model. In addition, the model checking

search engine can be used as an independent problem solving mechanism for

verifying the planning engine. This is possible because goals can be mapped

into properties and traces correspond to plans.

We are currently working on identifying a set of verification properties that

guarantee a certain degree of coverage for HSTS models and the Planning engine.

We are also analyzing the benefits, and limitations, of using a model checker for

HSTS verification.

References

[1.] A. C[matti, M. Rov,__ri, and P. Traverso. 1998. Strong planning in non-

det(._rmmistic domains via model checking. In the Proceedings of tile

4th International Confrrence on Artificial Intelligence Planning System

(AIPS98), pp. 36-43. AAAI Press.

I2] M. Di Manzo, E. Giunchiglia, and S. Rufl:ino. 1998. Planning via model

checking in deterministic domains: Preliminary report. In the Proceedings

of the 8th International Conference on Artificial Intelligence: Methodology,

Systems, and Applications (AIMSA98), pp. 2:21-229. Springer-Verlag.

[a] K. Havelund, K. G. Larsen, and A. Skou. 1999. Formal Verification of a

Power Controller Using the Real-Time Model Checker UPPAAL. In the

Proceedings of the 5th International AMAST Workshop on Real-Time and

Probabitistic Systems.

[4] K. Havelund, A. Slou, I,:. G. Larsen. and K. Lund. 1997. Formal Model-

ing and Analysis of and Audio/Video Protocol: An Industrial Case Study

Using UPPAAL. In the Proceedings of the 18th IEEE Real-Time Systems

Symposium, pages 14-24. San Francisco, California.

[5] A. K..Ionsson, P. H. Morris. N. Muscettola, and K. Rajan. 1999. Planning

in Interplanetary Space: Theory and Practice. American Association for

Artificial Intelligence (AAAI-99)

[6] K. G. Larsen, P. Pettersson, and W. Yi. 1997. UPPAAL in a Nutshell In

Springer International Journal of Software Tools for Technology Transfer

I(1+2).

[7] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. 1997. Efficient Verifi-

cation of Real-Time Systems: Compact Data Structures and State-Space

Reduction. In the Proceedings of the 18th IEEE Real-Time Systems Sym-

posium, pages 14-24. IEEE Computer Society Press.

[8] Muscettola, P. P. Nayak, B. Pell, and B. William. 1998 Remote Agent:

To boldly go where no AI system has gone before. Artificial Intelligence

103(1-2):5-48

[9]N..\luscettola.1994.[-[STS:Integratedplanningandscheduling.In M.
ZwebenandM. Fox,eds.,[ntelligentScheduling.MorganKaufman.169-
212

[10t J Penix,C.Pecheur,K.Havelund.1998.UsingModelCheckingtoValidate
AIPlannerDomainModels.IntheProceedingsofthe23rdAnnualSoftware
EngineeringV_brkshop, NASA Goddard.

[11] W. Yi, P. Pettersson, and M. Daniels. 1994. Automatic Verification of Real-

Time Communicating Systems by Constraint-Solving. In Dieter Hogrefe

and Stefan Leue, editors, Proceedings of the 7'th International Conference

on Formal Description Techniques, pages 223-238. North-Holland.

